首页> 外文OA文献 >Finite element analysis and modelling of thermal stress in solid oxide fuel cells
【2h】

Finite element analysis and modelling of thermal stress in solid oxide fuel cells

机译:固体氧化物燃料电池热应力的有限元分析与建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Durability and reliability of anode supported SOFC stacks have proven unsatisfactory in large scale trials, showing rapid failure, thermal cycling in tolerance and step change in electrochemical performance most likely related to mechanical issues. Monitoring and understanding the mechanical conditions in the stack especially during temperature changes can lead to improvements of the design and of the operating regime targeting maximum durability. Within this project modelling and simulation of thermal stresses within the different parts of the cells and the stack and the validation of this models play a key role and were performed in this work. The modelling and simulation of stress and strain have been carried out using the FEA software ABAQUSTM. Model variations documented the importance of exact knowledge of material properties like Young’s modulus, Poisson’s ratio, thermal expansion coefficient, thermal conductivity and creep viscosity. The benefit of literature data for these properties is limited by the fact that all these properties are highly dependent on the composition of materials but also on details of the fabrication process like mixing, fabrication technique and sintering temperature and duration. The work presented here is an investigation into the modelling techniques which can be most efficiently applied to represent anode supported solid oxide fuel cells and demonstrates the temperature gradient and constraint on the stresses experienced in a typical design. Comparing different meshing elements representing the cell parts thin shell elements (S4R) provided the most efficiently derived solution. Tensile stress is most significant in the cathode layers reaching 155 MPa at working conditions. The stress relieving effect of creep led to a reduction of stress by up to 20% after 1000 hours at 750°C, reducing the tensile stress in the cathode area to maximal 121 MPa. Constraint between bipolar plates increases the tensile stress, especially in the cathode layers leading to a peak value of 161 MPa.
机译:阳极支撑的SOFC电池组的耐用性和可靠性在大规模试验中不令人满意,显示出快速失效,公差的热循环以及电化学性能的阶跃变化,这很可能与机械问题有关。监视和了解烟囱中的机械状况,特别是在温度变化期间,可以导致设计和针对最大耐用性的运行方式的改进。在该项目中,对电池和电池堆不同部分内的热应力进行建模和仿真,并且对该模型的验证起着关键作用,并在这项工作中进行。应力和应变的建模和仿真已使用FEA软件ABAQUSTM进行。模型的变化记录了精确了解材料特性(如杨氏模量,泊松比,热膨胀系数,导热系数和蠕变粘度)的重要性。所有这些特性都高度依赖于材料的成分,而且还取决于制造工艺的细节(例如混合,制造技术以及烧结温度和持续时间),这限制了文献数据对这些特性的好处。此处介绍的工作是对建模技术的研究,该建模技术可以最有效地应用于代表阳极支撑的固体氧化物燃料电池,并演示了温度梯度和典型设计中所经历的应力约束。比较代表单元部分的不同网格元素,薄壳元素(S4R)提供了最有效的解决方案。在工作条件下,在达到155 MPa的阴极层中,拉伸应力最为显着。蠕变的应力消除作用导致在750°C下1000小时后应力降低多达20%,从而将阴极区域的拉应力降低到最大121 MPa。双极板之间的约束增加了拉应力,尤其是在阴极层中导致了161 MPa的峰值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号